Total number of printed pages-8

3 (Sem-5/CBCS) ZOO HC 1

100

2022

ZOOLOGY

(Honours)

Paper: ZOO-HC-5016

(Molecular Biology)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Choose the correct answer : (any seven)

 1×7=7
 - (i) The number of base pair per turn is 11 in
 - (a) Z-DNA
 - (b) A-DNA
 - (c) B-DNA
 - (d) C-DNA as restrict house in

S PARTON CONT.

- (ii) During splicing
- joined together
 - (b) Exons are removed and introns are joined
 - (c) Both introns and exons are removed
 - (d) Both introns and exons are joined
 - (iii) DNA replication is
 - (a) conservative
 - (b) dispersive
 - (c) semiconservative
 - (d) repulsive
 - (iv) RNA primers are synthesized with the help of the enzyme
 - (a) RNA polymerase
 - (b) Primase
 - (c) Topoisomerase
 - (d) Ligase

3 (Sem-5/CBCS) ZOO HC 1/G 2

(v) The factor involved in initiation of transcription in prokaryotes is
(a) alpha factor nosicsom (a)
(b) beta factor bas doost (d)
(c) sigma factor, erading (c)
(d) None of the above (i)
(vi) Poly A tail is attached at the A (XI)
(a) 3' end of DNA Hama is (D)
(b) 5' end of DNA usus s (d)
(c) AV3' end of RNA HERRE A (D)
(d) 5' end of RNA Henre & (b)
(vii) The release factor(s) involved in termination of polypeptide in prokaryotes is/are
(a) RF1 Builling nors (b)
(b) RF2
(c) RF3
(d) RF1, RF2 and RF3
3 (Sem-5/CBCS) ZOO HC 1/G 3 A OVI OH GOT (SOS Contd. 8) E

(viii) The lac operon in E. coli was discovered by coloring at action and the coloring to the

45.3

- (a) Meselson and Stahl
- (b) Jacob and Monod
- (c) Barbara McClintock
- (d) Watson and Crick
- (ix) A miRNA is lead a viole
 - (a) a small coding RNA
 - (b) a small coding tRNA
 - (c) a small non-coding RNA
 - (d) a small rRNA bas (b)
- (x) The process by which a given gene is spliced into more than one type of mRNA molecule is called

FUSI

- (a) exon shuffling
- (b) alternative splicing
- (c) intron shuffling
- (d) spliceosome machinery

	Salayin.	
(xi)	The	site of protein synthesis is
AOA.	(a)	Nucleolus to sick (m)
	(b)	Ribosome
	(c)	Mitochondria
eld s	(d)	Nucleus
(xii)	cod seq	ne sequence of bases in the mRNA on is CAU, then the anticodon uence in the corresponding tRNA be
ili	(a)	Write the steps in ATD
	(b)	AUG
oldd:	(c)	GUG Reserved on Just Will (a)
G={;+	i (d)	S.GUA blue fliw elegniogyn.
Wr (an	ite s	short notes on the following:
(a)	Cha	argaff's rule
(b)	Rep	olication fork
(c)	RN	A interference

DNA dependent RNA polymerase

3 (Sem-5/CBCS) ZOO HC 1/G 5 O ON OH OOK (SOE Contd. S) &

Transcription factors

2.

(e)

- (f) Shine-Dalgarno sequence
- (g) Role of aminoacyl-tRNA synthetases
- Methylation of DNA (h) Mitochondra
- Answer any three questions from the 3. 5×3=15 following: the sequence of bases
 - What is a telomere? Write a note on replication of telomere. 1+4=5 end Hirar
 - Write the steps involved in (b) replication of linear ds-DNA.
 - What do you mean by degeneracy of (c) the genetic code? Define Wobble hypothesis with suitable example.

2+3=5

- (d) Briefly explain the process of rhoindependent and rho-dependent termination in prokaryotes. 3+2=5
 - Comment on the structure of globin (e) mRNA with proper illustration.
 - What do you mean by initiation factor (f) and elongation factor in eukaryotic translation? Name those eukaryotic initiation and elongation factors.

3 (3em - 5/CBCS) 200 HC 1/O

6 3 (Sem-5/CBCS) ZOO HC 1/G

- (g) What is a silencer in the context of regulation of gene expression?

 Elaborate on the location of silencer within the genome.

 2+3=5
 - (h) What is photoreactivation repair of DNA? Write the steps involved in the process of photoreactivation repair of thymine dimer in DNA molecule.

2+3=5

- 4. Answer **any three** from the following: 10×3=30
 - (a) Briefly explain the mechanism of rolling circle DNA replication.
 - (b) What do you mean by 5'UTR and 3'UTR? Elaborate the mechanism of transcription in eukaryotes with appropriate diagrams. 2+8=10
 - (c) What are protein synthesis inhibitors? Explain the inhibition mechanism of protein synthesis inhibitors with examples. 2+8=10
 - . (d) Write the difference between prokaryotic and eukaryotic translation.

3 (Sem-5/CBCS) ZOO HC 1/G 7 UAG AUA CONTO.

(e) What is RNA splicing? Exp	lain the
mechanism of t-RNA splicing	patitway.
Elaborate on the location of silencer	2+8=10

- What is regulation of gene expression?
 Discuss the regulation of tryptophan synthesis in prokaryotes. 2+8=10
- Describe the salient features of genetic code.
- .(h) Briefly explain the structure and assembly of a prokaryotic ribosome.
 4+6=10
- (a) Which is explain the mechanism of rolling circle DAA replication.
- (b) What do vou mean by S'UTR and 21172 2 Elaborate the mechanism of transcription is cubaryones with appropriate diagrams 12:8=10
- Faplain the inhibitor mechanism of Explain the inhibitors mechanism of protein ayathesis inhibitors with protein synthesis thin bifors with synthesis sections of \$2.8=10 and \$1.00 and \$1
- 3 (Sem-5/CBCS) ZOO HC 1/G 8 2700