## Total number of printed pages-11

3 (Sem-3/CBCS) MAT HC 3

## 2022

## **MATHEMATICS**

(Honours)

Paper: MAT-HC-3036

(Analytical Geometry)

Full Marks: 80

Time: Three hours.

The figures in the margin indicate full marks for the questions.

## 1. Answer any ten:

 $1 \times 10 = 10$ 

- (i) Write down the formulae of transformation from one pair of rectangular axes to another with same origin.
- (ii) Find the equation to the locus of the point P(t, 2t) if t is a parameter.

- (iii) For what value of a, the transformation x' = -x + 2, y' = ax + 3 is a translation?
- (iv) What is the locus represented by the equation  $ax^2 5xy + 6y^2 = 0$ ?
- (v) Write down the polar equation of the straight line x = 0.
- (vi) Under what condition  $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ may represents a pair of straight lines?
- (vii) What will be the equation of the line ax + by + c = 0 if the origin is transferred to the point  $(\alpha, \beta)$ ?
- (viii) The parabola represented by the equation  $y^2 = 4ax$  is not a closed curve. How can you justify it from the given equation?
- (ix) Write the relationship between the lengths of semi-major axis, semi-minor axis and the eccentricity for the standard equation of the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, b > a.$

(x) What conic does the following equation represent?

$$x^2 + 2xy + y^2 - 2x - 1 = 0$$

- (xi) What are the direction ratios of the normal to the plane given by equation ax + by + cz + d = 0?
- (xii) Write down the direction cosines of z-axis.
- (xiii) When does the equation  $ax^2 + by^2 + cz^2 + 2ux + 2vy + 2wz + d = 0$  represent a sphere?
- (xiv) When is a plane said to be parallel to a line?
- (xv) Mention the condition under which the lines  $\frac{x-\alpha_1}{l_1} = \frac{y-\beta_1}{m_1} = \frac{z-\gamma_1}{n_1}$  and  $\frac{x-\alpha_2}{l_2} = \frac{y-\beta_2}{m_2} = \frac{z-\gamma_2}{n_2}$  are coplanar.
- (xvi) What are centre and radius of the sphere given by the equation  $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ ?

- (xvii) Define the polar plane of a point  $(\alpha, \beta, \gamma)$  with respect to the conicoid  $ax^2 + by^2 + cz^2 = 1$ .
- (xviii) What are the coordinates of the vertex of the cone  $ax^2 + by^2 + cz^2 + 2ux + 2vy + 2wz + d = 0$ ?
- Answer any five :

 $2 \times 5 = 10$ 

- (a) Find the equation of the line  $y = \sqrt{3}x$ when the axes are rotated through an angle  $\frac{\pi}{3}$ .
- (b) If  $(at_1^2, 2at_1)$  and  $(at_2^2, 2at_2)$  are the extremities of any focal chord of the parabola  $y^2 = 4ax$ , prove that  $t_1t_2 = -1$ .
- If the two pair of lines  $x^2 - 2pxy - y^2 = 0$  and  $x^2 - 2qxy - y^2 = 0$  be such that each pair bisects the angle between the other pair, prove that pq+1=0.

- If  $e_1$  and  $e_2$  are the eccentricities of a hyperbola and its conjugate, show that  $\frac{1}{e_1^2} + \frac{1}{e_2^2} = 1.$
- Find the equation of the plane containing the lines 2x + 3y + 5z - 7 = 0, 3x - 4y + z + 14 = 0and passing through the origin.
- Find the equation of the cone whose vertex is at the origin and whose guiding curve is given by x = a,  $u^2 + z^2 = b^2$ .
- Find the equation of the sphere through the circle  $x^{2} + y^{2} + z^{2} = 9$ , 2x + 3y + 4z = 5and the point (1, 2, 3).
- Mention the conditions under which the general equation of the second degree  $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents (i) a parabola, (ii) an ellipse, (iii) a hyperbola, and (iv) a circle.
- Find the perpendicular distance of the point (1, 4, -2) from the plane 3 (Sem-3/CBCS) MAT HC 3/G 5

Date: .... Contd.

- (j) The axis of a right circular cylinder is  $\frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-3}{2}$  and its radius is 5. Find its equation.
- 3. Answer any four:

5×4=20

(a) Prove that the transformation of rectangular axes which converts

$$\frac{X^2}{P} + \frac{Y^2}{Q} \quad \text{into} \quad ax^2 + 2hxy + by^2 \quad \text{will}$$

convert 
$$\frac{X^2}{P-\lambda} + \frac{Y^2}{Q-\lambda}$$
 into

$$\frac{ax^2 + 2hxy + by^2 - \lambda(ab - h^2)(x^2 + y^2)}{1 - (a+b)\lambda + (ab - h^2)\lambda^2}.$$

(b) Prove that the equation  $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$  represents a pair of parallel straight lines if  $\frac{a}{h} = \frac{h}{b} = \frac{g}{f}$ .

- (c) Show that the line lx + my = n is a tangent to the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ , if  $a^2l^2 + b^2m^2 = n^2$ .
- (d) Prove that the product of the perpendiculars from any point on a hyperbola to the asymptotes is constant.
- (e) A plane passes through a fixed point (p, q, r), and cut the axes in A, B, C. Show that the locus of the centre of the sphere OABC is  $\frac{p}{x} + \frac{q}{y} + \frac{r}{z} = 2$ .
- (f) Find the centre and radius of the circle  $x^2 + y^2 + z^2 8x + 4y + 8z 45 = 0,$ x 2y + 2z = 3.
- (g) The plane  $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$  meets the coordinate axes in A, B, C. Prove that the equation of the cone generated by the lines drawn from O is

$$yz\left(\frac{b}{c} + \frac{c}{b}\right) + zx\left(\frac{c}{a} + \frac{a}{c}\right) + xy\left(\frac{a}{b} + \frac{b}{a}\right) = 0.$$

Data (Sem -3) CBCS) MAT HC 3/G

Contd.

$$\frac{x}{a}\sqrt{a^2 - b^2} + \frac{z}{c}\sqrt{b^2 - c^2} = \lambda \text{ cuts the}$$
ellipsoid 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text{ is}$$

$$b\sqrt{1 - \frac{\lambda^2}{a^2 - c^2}}.$$

(h) Prove that the lines through 
$$(\alpha, \beta, \gamma)$$
 at right angles to their polars with respect to  $\frac{x^2}{a+b} + \frac{y^2}{2a} + \frac{z^2}{2b} = 1$  generate the cone  $(y-\beta)(\alpha z - \gamma x) + (z-\gamma)(\alpha y - \beta x) = 0$ . What is the peculiarity of the case when  $a=b$ ?

(i) Show that the equation of the cylinder whose generators are parallel to the line 
$$\frac{x}{1} = \frac{y}{-2} = \frac{z}{3} \text{ and guiding curve is}$$
$$x^2 + 2y^2 = 1, z = 3 \text{ is}$$

$$3(x^2+2y^2+z^2)+8yz-2zx+6x-24y-18z+24=0$$
.

(j) What do you mean by a director sphere? Find the equation of the director sphere of the conicoid  $ax^2 + by^2 + cz^2 = 1$ . Hence or otherwise prove that the director sphere of the

ellipsoid 
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 is  $x^2 + y^2 + z^2 = a^2 + b^2 + c^2$ .

