Total number of printed pages-8

3 (Sem-5/CBCS) MAT HC 1

2021

(Held in 2022)

MATHEMATICS

(Honours)

Paper: MAT-HC-5016

(Riemann Integration and Metric Spaces)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: $1 \times 10 = 10$
 - (a) Describe an open ball in the discrete metric space.
 - (b) Find the derived set of the sets (0, 1] and [0, 1].
 - (c) A subset B of a metric space (X, d) is open if and only if
 - (i) $B = \overline{B}$
 - (ii) $B = B^{\circ}$
 - (iii) $B \neq \overline{B}$
 - (iv) $B \neq B^{\circ}$

(Choose the correct one)

Contd.

- (c) Let (X, d_X) and (Y, d_Y) be metric spaces and $f: X \to Y$. If for all subsets A of X, $f(\overline{A}) \subseteq \overline{f(A)}$, then show that f is continuous on X.
 - (d) Let $f:[a,b] \to \mathbb{R}$ be integrable. Show that |f| is integrable.
- (e) Show that the function $f:[a,b] \to \mathbb{R}$ defined by f(x)=c for all $x \in [a,b]$ is integrable with its integral c(b-a).
- 3. Answer **any four** parts: 5×4=20
 - (a) Define a complete metric space. Show that the metric space $X = \mathbb{R}^n$ with the metric given by

$$d_p(x,y) = \left(\sum |x_i - y_i|^p\right)^{\frac{1}{p}}, p \ge 1$$

where $x = (x_1, x_2, ..., x_n)$ and

 $y = (y_1, y_2, ..., y_n)$ are in \mathbb{R}^n , is a complete metric space. 1+4=5

- (b) Let (X, d_X) and (Y, d_Y) be metric spaces. Prove that a mapping $f: X \to Y$ is continuous on X if and only if $f^{-1}(G)$ is open in X for all open subsets G of Y.
- (c) Prove that if the metric space (X, d) is disconnected, then there exists a continuous mapping of (X, d) onto the discrete two-element space (X_0, d_0) .
- (d) Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Prove that f is integrable.
- (e) Discuss the convergence of the integral $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ for various values of p. 5
- (f) Show that for a > -1,

$$S_n = \frac{1^n + 2^n + \dots + n^n}{n^{1+a}} \to \frac{1}{1+a}$$
.

- 4. Answer *any four* parts : 10×4=40
 - (a) (i) Let (X, d) be a metric space. Define $d: X \times X \to \mathbb{R}$ by $d'(x,y) = \frac{d(x,y)}{1+d(x,y)} \text{ for all }$

 $x, y \in X$. Prove that d' is a metric on X.

Also show that d and d' are equivalent metrices on X.

4+2=6

- (ii) Prove that a convergent sequence in a metric space is a Cauchy sequence.
- (b) (i) Let (X, d) be a metric space and F be a subset of X. Prove that F is closed in X if and only if F^c is open.
 - (ii) If (Y, d_Y) is a subspace of a metric space (X, d), then show that a subset Z of Y is open in Y if and only if there exists an open set $G \subseteq X$ such that $Z = G \cap Y$.

(c) Prove that a metric space (X,d) is complete if and only if for every nested sequence $\{F_n\}_{n\geq 1}$ of non-empty closed subsets of X such that $d(F_n)\to 0$ as $n\to\infty$, the intersection $\bigcap_{n=1}^\infty F_n$ contains one and only one point.

- (d) (i) Prove that in a metric space (X, d), each open ball is an open set.
 - (ii) Let (X, d_X) and (Y, d_Y) be metric spaces and $A \subseteq X$. Prove that a function $f: A \to Y$ is continuous at $a \in A$ if and only if whenever a sequence $\{x_n\}$ in A converges to a, the sequence $\{f(x_n)\}$ converges to f(a).
- (e) (i) Define uniformly continuous mapping in a metric space. Give an example to show that a continuous mapping need not be uniformly continuous. 1+4=5

- (ii) Prove that the image of a Cauchy sequence under a uniformly continuous mapping is itself a Cauchy sequence.
 - (f) Let (\mathbb{R}, d) be the space of real numbers with the usual metric. Prove that a subset $I \subseteq \mathbb{R}$ is connected if and only if I is an interval.
 - (g) Let $f:[a,b] \to \mathbb{R}$ be a bounded function. Show that f is integrable if and only if it is Riemann integrable.

(h) (i) State and prove first fundamental theorem of calculus. Using it show that

$$\int_{0}^{a} f(x)dx = \frac{a^{4}}{4} \text{ for } f(x) = x^{3}.$$

$$1+3+2=6$$

(ii) Let f be continuous on [a, b]. Prove that there exists $c \in [a, b]$

such that
$$\frac{1}{b-a}\int_{a}^{b} f(x)dx = f(c)$$
.

4