3 (Sem-1/CBCS) MAT HC2

2021 (Held in 2022)

MATHEMATICS

(Honours)

Paper: MAT-HC-1026

(Algebra)

Full Marks: 80

Time: Three hours

The figures in the margin indicate full marks for the questions.

- 1. Answer the following as directed: $1 \times 10 = 10$
 - (a) Find the polar representation of z = 2i.
 - (b) If x = 0 and y > 0, then what is the value of t^* ?
 - (c) Write the negation of the statement 'For any integer n, $n^2 > n$ ' in plain English then formulate the negation using set of context and quantifier.

- (d) Disapprove the statement using counter example:
 - "For any $x, y \in \mathbb{R}$, $x^2 = y^2$ implies x = y."
- (e) Suppose f is a constant function from X to Y. The inverse image of a subset of Y cannot be
 - (i) an empty set
 - (ii) the whole set X
 - (iii) a non-empty proper subset of X (Choose the correct option)
- (f) Let $X = Y = \mathbb{R}$. Let $A \subseteq X$, $B \subseteq Y$. Draw the picture for $A \times B$ where A = [-1,1] and B = [2,3].
- (g) Suppose a system of linear equations in echelon form has a 3 × 5 augmented matrix whose fifth column is a pivot column.

Is the system consistent? Justify.

(h) If a set $S = \{\vec{v}_1, \vec{v}_2,, \vec{v}_p\}$ in \mathbb{R}^n contains the \vec{O} vector, is the set linearly independent? Justify.

- (i) If $A = \begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix}$ $\vec{x} = \begin{bmatrix} 5 \\ 3 \end{bmatrix}$, compute $(A\vec{x})^T$.
- (j) What is the determinant of an $n \times n$ elementary matrix E that has been scaled by 7.
- 2. Answer the following questions: 2×5=10
 - (a) If $z = -2\sqrt{3} 2i$, find the polar radius and polar argument of z.
 - (b) Is the function $g: \mathbb{R} \to \mathbb{R}$ given by g(x) = |x-2| one-one and onto? Explain.
 - (c) Let universal set be \mathbb{R} and index set be \mathbb{N} . For a natural number n, $J_n = \left(0, \frac{1}{n}\right)$.

Identify with justification $\bigcap_{n\in\mathbb{N}} J_n$.

(d) Show that T is a linear transformation by finding a matrix that implements the mapping

$$T(x_1, x_2, x_3, x_4) = (0, x_1 + x_2, x_2 + x_3, x_3 + x_4)$$

- (e) A is a 2 × 4 matrix with two pivot positions. Answer the following with justification:
 - (i) Does $A\vec{x} = \vec{0}$ have a non-trivial solution?
 - (ii) Does $A\vec{x} = \vec{b}$ have at least one solution for every \vec{b} ?
- 3. Answer any four questions from the following: 5×4=20
 - (a) Find the polar representation of the complex number

$$z = 1 - \cos a + i \sin a \quad a \in [0, 2\pi).$$

(b) Let A and B be subsets of an universal set U. Prove —

(i)
$$(A \cap B)^C = A^C \cup B^C$$

(ii)
$$(A \cup B)^C = A^C \cap B^C$$
 5

- (c) Define bijection. Let $f: \mathbb{N} \to \mathbb{N}$ be f(m) = m - 1, if m is even f(m) = m + 1, if m is odd. Show f is a bijection and $f^{-1} = f$. 1+4=5
- (d) For vectors $\vec{v}_1, \vec{v}_2,, \vec{v}_p \in \mathbb{R}^n$ define span $\{\vec{v}_1, \vec{v}_2,, \vec{v}_p\}$ construct a 3×3 matrix A with non-zero elements and a vector \vec{b} on \mathbb{R}^3 such that \vec{b} is not in the set spanned by the columns of A. 2+3=5
- (e) Alka-Seltzer contains sodium bicarbonate ($NaHCO_3$) and citric acid ($H_3C_6H_5O_7$). When a tablet is dissolved in water the following reaction produces sodium citrate, water and carbon dioxide:
- $NaHCO_3 + H_3C_6H_5O_7 \rightarrow Na_3C_6H_5O_7 + H_2O + CO_2$ Balance the chemical equation using vector equation approach. 5
 - (f) Prove that an $n \times n$ matrix A is invertible if and only if A is row equivalent to I_n , and in this case any sequence of elementary row operations that reduces A to I_n also transforms I_n into A^{-1} .

- 4. Answer any four from the following: $10 \times 4 = 40$
 - (i) Find the cube roots of the number (a) z = 1 + i and represent them in the complex plane. 5
 - (ii) Find the number of ordered pairs (a, b) of real numbers such that $(a+ib)^{2002}=a-ib.$ 2
 - (iii) If x, y, z be real numbers such that $\sin x + \sin y + \sin z = 0$ and $\cos x + \cos y + \cos z = 0$, prove that $\sin 2x + \sin 2y + \sin 2z = 0$ and $\cos 2x + \cos 2y + \cos 2z = 0$.

- (i) Solve the equation (b) $z^7 - 2iz^4 - iz^3 - 2 = 0$. 5
 - Find the inverse of the matrix if (ii) it exists by performing suitable row operations on the augmented matrix [A: I]

$$A = \begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix}$$
 5

- (c) (i) If $f: X \to Y$ be a map and $B \subseteq Y$, then prove $f^{-1}(B^C) = (f^{-1}(B))^C$.
 - (ii) $A_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$, where $n \in \mathbb{N}$. Find $\bigcup_{n \in \mathbb{N}} A_n \text{ and } \bigcap_{n \in \mathbb{N}} A_n.$ 2
 - (iii) Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2$. Find $f^{-1}(1), f^{-1}(-1), f^{-1}([0, 1])$.
- (d) (i) State the induction principle and use it to show that for any positive integer $1+2+3+...+n=\frac{n(n+1)}{2}$.

4

(ii) Write as an implication 'square of an even number is divisible by 4'.

Then use direct proof to prove it.

7

- (iii) Give proof using contrapositive 'For an integer x if $x^2 - 6x + 5$ is even, then x is odd'.
- (e) (i) Use the invertible matrix theorem to decide if A is invertible

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 1 & 2 \\ -5 & -1 & 9 \end{bmatrix}$$
 2

(ii) Compute det A where

$$A = \begin{bmatrix} 2 - 8 & 6 & 8 \\ 3 - 9 & 5 & 10 \\ -3 & 0 & 1 - 2 \\ 1 - 4 & 0 & 6 \end{bmatrix}$$

(iii) What do you mean by equivalence class for an equivalence relation? For the relation $a \equiv b \mod(5)$ on z, find all the distinct equivalence classes of z. 1+3=4

(f) (i) Solve the system of equations

$$x_1 - 3x_3 = 8$$
$$2x_1 + 2x_2 + 9x_3 = 7$$
$$x_2 + 5x_3 = -2$$

- (ii) Choose h and k such that the system has 4
 - (a) no solution
 - (b) a unique solution
 - (c) many solutions

$$x_1 + hx_2 = 2$$
$$4x_1 + 8x_2 = k$$

- (iii) Write the general solution of $10x_1 3x_2 2x_3 = 7$ in parametric vector form.
- (g) (i) Prove that the indexed set $S = \left\{ \vec{v}_1, \vec{v}_2,, \vec{v}_p \right\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in S is a linear combination of the others. In fact, if S is linearly dependent and $\vec{v}_1 \neq \vec{0}$, then some \vec{v}_j (with j > 1) is a linear combination of the preceding vectors $\vec{v}_1, \vec{v}_2, ..., \vec{v}_{j-1}$.

(ii) Use Cramer's rule to compute the solutions of the system 3

$$-5x_1 + 3x_2 = 9$$
$$3x_1 - x_2 = -5$$

- (iii) Suppose $T: \mathbb{R}^5 \to \mathbb{R}^2$ and $T(\vec{x}) = A\vec{x}$ for some matrix A and each \vec{x} in \mathbb{R}^5 . How many rows and columns does A have? Justify.
- (h) (i) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that rotates each point in \mathbb{R}^2 about the origin through an angle ϕ with the counter-clockwise direction taken as positive. Find the standard matrix for this transformation.

3

(ii) Let T: Rⁿ → R^m be a linear transformation.
 Prove that T is one-to-one if and only if the equation T(x̄)=0 has only the trivial solution.

(iii) Find the area of the parallelogram whose vertices are (0, -2), (6, -1), (-3, 1) and (3, 2).