2017

MATHEMATICS

(Major)

Paper: 1.2

(Calculus)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following questions:
- $1 \times 10 = 10$
 - Write the *n*th derivative of $\sin^3 x$. (a)
 - If $f(x, y) = 3x^2y + 2xy^2$, find $f_x(1, 2)$. (b)
 - State Euler's theorem on homogeneous (c) function of degree n for two variables.
 - Write the subtangent of the curve (d) $y^2 = 4ax$.
 - Define asymptotes. (e)
 - Write the value of $\int_{-a}^{a} x^3 \sqrt{a^2 x^2} dx$. (f)
 - Define point of inflexion. (g)
 - For a pedal curve $p = r \sin \phi$, write the (h) formula for radius of curvature.

- (i) Write down the reduction formula for $\int \tan^n x dx$
- (j) What is a cusp?
- **2.** Answer the following questions :

2×5=10

- (a) Find nth derivative of $\frac{1}{a^2 x^2}$.
- (b) If $u = x^2 \tan^{-1} \frac{y}{x} y^2 \tan^{-1} \frac{x}{y}$, find $\frac{\partial^2 u}{\partial x \partial y}$
- (c) The tangent of the curve $y^2 = 4a\left\{x + \sin\frac{x}{a}\right\}$ at (x_1, y_1) is parallel to x-axis. Show that $\cos(x_1/a) = -1$
- (d) Evaluate $\int_0^{\pi} x \sin x \cos^2 x \, dx$.
- (e) Find the area bounded by the parabola $y^2 = 4ax$ and its latus rectum.
- 3. Answer the following questions :
 - (a) (i) If $u = e^{xyz}$, show that $\frac{\partial^3 u}{\partial x \partial u \partial z} = (1 + 3xyz + x^2y^2z^2)e^{xyz}$
 - (ii) Find the pedal equation of the curve

$$x^2 + y^2 = 2ax 2$$

(b) Derive a reduction formula for $\int \cos^n x \, dx$.

3

5

4. Answer either (a) or (b):

(a) (i) Tangents are drawn from the origin to the curve $y = \sin x$. Prove that their points of contact lie on

$$x^2y^2 = x^2 - y^2$$
 5

(ii) Evaluate
$$\int \frac{dx}{(1+x)\sqrt{1+2x-x^2}}$$
 5

(b) (i) Evaluate $\int \frac{dx}{3+5\cos x}$. 5

(ii) Evaluate
$$\int \sqrt{\frac{x-3}{x-4}} dx$$
. 5

5. Answer the following questions:

- (a) If $y = [x + \sqrt{1 + x^2}]^m$, find the *n*th derivative of y for x = 0.
- (b) Find the perimeter of the circle

$$x^2 + y^2 = a^2$$

- 6. Answer either (a) or (b):
 - (a) (i) If $u = x \phi(y/x) + \psi(y/x)$, prove that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 y}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$

5

÷ .	(ii)	Find the volume of the solid generated by the revolution of the curve $(a-x)y^2 = a^2x$ about its asymptote.	5
(b)	<i>(i)</i>	Find the asymptotes of the curve $x^4 - x^2y^2 + x^2 + y^2 - a^2 = 0$	5
	(ii)	Trace the curve $y = x^3$.	5
Ans	wer i	the following questions :	
(a)	cur	w that points of inflexion of the $y^2 = (x-a)^2(x-b)$ lie on the line $a = 4b$.	5
(b)	gene	the surface area of the soliderated by revolving the cardioid $(1-\cos\theta)$ about the initial line.	5
Ans	wer e	ither (a) or (b):	
	Derive a reduction formula for		
		$\int \sin^m x \sin nx dx$	
	Hend	ce evaluate	
	$\int_0^\pi \sin^m x \sin nx dx \qquad 7+3=$		

 $2(x^3 + y^3) - 3(3x^2 + y^2) + 12x = 4$ 2+8=10

What are the double points? Examine

the nature of double points of the curve

(b)

7.

8.