2017

CHEMISTRY

(Major)

Paper: 3.2

(Chemical Bonding)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following questions as directed:

 $1 \times 7 = 7$

- (a) Which of the following ions have the planar geometry?
 - (i) NH₄⁺
 - (ii) BrO3
 - (iii) SO₃
 - (iv) NO3

(Choose the correct answer)

(b) Determine if the molecule below has conjugation, aromaticity, both or neither:

- What is the number of tetrahedral voids per unit cell in NaCl crystal?
- (d) Why are ionic solids generally poor conductors of electricity?
- Arrange the following in order of their increasing bond length:

NF₃, BF₃, NH₃ and PH₃

- What hybridization is predicted for sulfur in the HSO3 ion?
- The atomic diameter of a bcc crystal (g)(where a is the lattice parameter) is ____. (Fill in the blank)
- 2. Answer the following questions: $2 \times 4 = 8$
 - Sodium chloride melts at 1074 K; magnesium oxide melts at 3125 K. Both have identical structures. Why is there such a difference in their melting points?
 - Draw the structures of NO2, NO2 and NO₂. Arrange them in the increasing order of O-N-O bond angle.

- (c) Explain why water can form hydrogen bond more effectively than hydrogen fluoride.
- (d) Explain why iodine is a solid with a low melting and boiling point, almost insoluble in water, but soluble in organic solvents such as hexane.
- 3. Answer any three of the following questions:

5×3=15

(a) What do you mean by resonance giving energy? Explain suitable examples. Calculate the resonance energy of anthracene using the data provided below: 3+2=5

Heat of hydrogenation,

$$\Delta H_{\rm R} = -28.6 \text{ kcal mol}^{-1}$$

Excess
$$H_2$$

$$\Delta H_R = -116.2 \text{ kcal mol}^{-1}$$

(b) What is theoretical density of a crystal? At room temperature, Po crystallizes in a primitive cubic unit cell. If a = 3.36 Å, calculate the density of Po. Its atomic mass is 209 g mol⁻¹. 2+3=5

8A/58

(b) What are radial and angular wave

(c) Discuss the trend in decomposition temperatures of alkaline earth metal carbonates in the reaction

 $MCO_3(s) \rightarrow MO(s) + CO_2(g)$ 5

- (d) Discuss how steric effects influence the reactivity and other properties of a molecule. How is it differ from electronic effects?

 4+1=5
- following Compare the pairs (e) of with respect molecules to the cited within parameters the parenthesis: $1 \times 5 = 5$
 - (i) CaF2 and TiO2 (radius ratio)
 - (ii) HCN and H2O (dipole moment)
 - (iii) O_2^- and O_2^{2-} (bond length)
 - (iv) BF3 and NF3 (shape)
 - (v) SeF₂ and SiO₂ (hybridization of the central atom)
- 4. Answer any three of the following questions:

5×3=15

(a) Predict the hybridization and draw the structure of the following molecule ions based on VSEPR theory:

5
P(CH₃)₃F₂, BrF₃, PF₆, ICl₂ and TeF₄

functions? Give the radial wave functions for 2s and 2p orbitals. Show, from its angular wave function, that the distribution of electronic charge in an s orbital is spherically symmetrical.

1+2+2=5

(c) What is meant by bcc arrangement of spheres? Show that the volume of space occupied for a bcc lattice of spheres is 68%.

(d) Write notes on the following: $2\frac{1}{2} \times 2=5$

- (i) Perovskite structure
- (ii) Molecular solids
- 5. Answer any three of the following questions:

5×3=15

(a) The theoretical and experimental lattice enthalpies obtained for silver halides are listed in the table below. On the basis of these data, answer the following:

	Lattice enthalpy	
Silver halides	Experimental value	Theoretical value
	$(kJ \text{ mol}^{-1})$	$(kJ \text{ mol}^{-1})$
AgF	+967	+953
AgCl	+915	+864
AgBr	+904	+830
AgI	+889	+808

8A/58

(Turn Over)

- (i) For AgF, the experimental and theoretical values are very close. What does that show?
- (ii) For AgI, there is a much greater difference between the two values. What does that suggest?
- (iii) Why do you think the difference between the two values increases as you go from AgF to AgI?

11/2+11/2+2=5

- (b) What are aromatic, anti-aromatic and non-aromatic compounds? If a molecule contains an aromatic ring, such as a benzene ring, attached to a non-aromatic ring, how does that affect the overall aromaticity of the molecule?

 Give suitable examples. 3+2=5
- (c) Discuss the radius ratio rule for determining the shapes of ionic crystals. The ionic radii of Rb⁺, Br⁻ and I⁻ ions are 1.47 Å, 1.95 Å and 2.16 Å respectively. Predict the most probable type of geometry exhibited by RbBr and RbI on the basis of radius ratio rule.

3+2=5

(d) What is band gap? Differentiate semiconductors, conductors and insulators on the basis of band gap. Why does a semiconductor behave like an insulator at absolute zero temperature? 1+3+1=5

* * *