3 (Sem-6) PHY M 2

2014

PHYSICS (Major)

Paper: 6.2

Full Marks: 60

Time : 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Mathematical Methods)

- **1.** Answer any two from the following : $1 \times 2 = 2$
 - (a) Evaluate the following quantity in 4-dimension :

$$\sum_{i, j} \delta^{i}_{j}$$

- (b) Define a scalar quantity.
- (c) Name any two branches of physics where tensors are applied.

14A-1000/1322

(Turn Over)

- 2. Answer any *four* from the following : 2×4=8
 - (a) Define transformation properties of a contravariant vector A^i and a covariant vector B_i .
 - (b) What do you mean by contraction of a mixed tensor? Contract A_{klm}^{ij} twice.
 - (c) Define inner product of two tensors. If R_{ij} and g^{ij} are two tensors, what is the rank of the quantity $g^{ij}R_{ij}$?
 - (d) Define coordinate transformation in N-dimensional space. If N is the dimension of space and r is the rank of a tensor, what is the number of components of the tensor?
 - (e) What is the rank of the quantity $A^i B_j$? If A_{ij} is a symmetric covariant tensor, which of the following is correct?
 - (*i*) $A_{ij} + A_{ji} = 0$
 - (*ii*) $A_{ii} + A_{ii} = 2A_{ij}$
 - (iii) $A_{ii} A_{ii} \neq 0$
 - (iv) None of the above

(Continued)

(3)

- 3. Answer any one of the following :
 - (a) If $A^{ij} = p^i q^j$, obtain the transformation of A^{ij} if the coordinates are transformed from x^i to x'^i .
 - (b) If \vec{A} and \vec{B} are two ordinary vectors, then show that components of $\vec{A} \times \vec{B}$ form a second rank antisymmetric tensor.
 - (c) Show that the components of Kronecker delta δ^{i}_{j} do not change under coordinate transformation.

GROUP-B

(Solid-state Physics)

- **4.** Choose the correct answer : 1×7=7
 - (a) Number of atom(s) per unit cell of an f.c.c. lattice is
 - (i) 1
 - (ii) 2
 - (iii) 3
 - (iv) 4

14A-1000/1322

(Turn Over)

- (b) Bonding between the atoms of silicon crystal is
 - (i) ionic
 - (ii) metallic
 - (iii) covalent
 - (iv) van der Waals
- (c) Relation between electrical and thermal conductivity of metals is given by
 - (i) Wiedemann-Franz law
 - (ii) Boltzmann law
 - (iii) Mathiessen rule
 - (iv) Poisson's law
- (d) Silicon can be made p-type semiconductor by doping with
 - (i) phosphorous
 - (ii) arsenic
 - (iii) aluminium
 - (iv) antimony
- (e) The phenomena of expulsion of magnetic lines of force from the interior of a superconductor is known as
 - (i) Meissner effect
 - (ii) Josephson effect
 - (iii) Hall effect
 - (iv) Thompson effect

(Continued)

- (f) Hysteresis is shown in
 - (i) nonmagnetic material
 - (ii) diamagnetic material
 - (iii) paramagnetic material
 - (iv) ferromagnetic material
- (g) Susceptibility of a diamagnetic material is
 - (i) large and negative
 - (ii) large and positive
 - (iii) small and negative
 - (iv) small and positive
- 5. Give very short answers to the following questions : 2×4=8
 - (a) What are nonprimitive unit cells?
 - (b) Differentiate between van der Waals and hydrogen bonding.
 - (c) Distinguish between intrinsic and extrinsic semiconductors from energy band diagram.
 - (d) What are ferromagnetic domains?

(Turn Over)

- Give short answers to the following questions (any two): 5×2=10
 - (a) Show that the first five terms in the series for Madelung constant of NaCl are

$$\alpha = 6 - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} - \frac{6}{2} + \frac{24}{\sqrt{5}}$$

- (b) Discuss about the position of Fermi level in intrinsic and extrinsic semiconductors under suitable limiting conditions.
- (c) Give an account of the experimental results which distinguish the superconducting state from the normal state of a metal.
- (d) An electromagnet with iron core achieves maximum magnetic field of 1.0 tesla. Obtain the magnetic interaction energy at a temperature of 300 K.
- Answer any two essay-type questions from the following : 10×2=20
 - (a) Explain why X-rays can get diffracted from solids. Illustrate quantitatively how Bragg's law can be used for determination of lattice constants.
 3+7=10

(Continued)

- (b) Write down Boltzmann transport equation for electrons under external electric field. Solve it to obtain an expression for electrical conductivity in solids.
- (c) Discuss the essential features of the electron energy band structure of solids on the basis of Kronig-Penny model. 10
- (d) Illustrate in detail about type-I and type-II superconductors. 10
- (e) Obtain an expression for paramagnetic susceptibility of free electrons on the basis of classical laws. Discuss its drawbacks and show how Pauli modified it.

3 (Sem-6) PHY M 2

10

14A-1000/1322